Mechanics of Solids: Anisotropy

The Hook’s law for the general material is presented

According to the material’s structural symmetries,

we deduce the number of elastic constants in various types of
anisotropy

Supporting material
Appendix D: Notes on Anisotropy (J Botsis)
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A material is linearly elastic if its applied stress field — o(x)

is related to the resulting strain field > &(x)

by a linear relation or the generalized Hooke law,

G(.X') — C(.X')E(X) ’ le (x) = Cklmn (x)gmn (x) (kala m,n = 19 293)

—

Stiffness fourth order tensor

l

Cl;lmn(x)zckicyc c C (X) (kalamanaiajapaq:19293)

mp - nq —ypq
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(T(X) — C(X)E(X) > Ukl(x) = Cklmn (x)gmn (X) (ka la m,n= 19 29 3)

Cl;lmn(x)zckiclj'c ¢, G (x) (kalamanaiajapaq:19293)

mp - nq —ypq

When the stiffness C(x) isindependent of x the we have
a homogeneous material otherwise it is inhomogeneous.

v

In the general case we have 9 equations and 3* =81 elastic constants.

0-11 = Cllllgll T C1112812 T C1113813 T C1121821 T C1122822 T C1123823 T C1131831 T C1132832 T C1133833
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0-11 = Cllllgll + C1112812 + C1113813 T C'1121821 + C11122822 T C1123823 T C1131831 + C1132832 + C1133833

In matrix form these equation are

We can write these equations using
compliance coefficients by taking

\4

the inverse of the stiffness

&= SO- > gkl — Sklmno-mn

S=C"

v

Stiffness Matrix

C1122 C1133

(j2222 (:;233
(j3322 (:%333
(:3222 (:3233
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(j2322 (:5333
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a
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M

2312

C1113 C1123
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C1313 C1323
C2313 C2323

Compliance Matrix

Sllll S1122 S1133 S1112
:;2211 :;2222 :;2233 :;2212
— S3311 S3322 S3333 S3312
S1211 S1222 S1233 S1212
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SYMMETRIES OF THE STIFFNESS MATRIX (OR COMPLIANCE)

Due to the symmetries of the stress and strain tensors, the

Tt = O C =C. =C are called minor symmetries
o = mmm C = Clppn = Clim Y

mn nm
These symmetries reduce the number of independent constants:

From 34 =81 to 36

To proceed further we need the help of thermodynamics:
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SYMMETRIES OF THE STIFFNESS MATRIX (OR COMPLIANCE)

In linear elasticity we adopt two important hypotheses: strain energy density

/ stress energy density
1: For an adiabatic or isothermal process, oW (&;) 8W*(0ij)
there exists a strain energy density function W, which is 0; = 7 & = T
also a potential for the stresses. i ij

1
2: The stability hypothesis which states that the e.Ce= Cy.klgljé‘k, >0, V E; # Q== Wi(e,)= Ecijklgzjgkl

stiffness tensor is positive definite, i.e., |
(W (o) = ESz'jklo-ijO-klj
These two hypotheses result in:
ow
=0 = C1111511 + C1122‘922 Tt C1132532

86‘11 O*W o'W
ow o e =Cy =0, = de O = “lmn — Cmnkl
Py =0y = C2211‘911 + C2222522 Tt C2232‘932 1w K= mn l

22

This symmetry reduces the independent elastic constants to 21
(the same arguments apply for the compliance coefficients)




Mechanics of Solids: Anisotropy

SYMMETRIES OF THE STIFFNESS MATRIX (OR COMPLIANCE)

Overall the symmetries are: C,

m

n — Clkmn — Cklnm — Cmnkl

With these symmetries, the matrix elements
can be simplified as shown in the table below,

matrix notatlon+

*This notation is used in the literature for layered composite materials
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BASIC CASES OF ELASTIC SYMMETRY

With respect to their elastic properties, all engineering materials
can be divided into isotropic and anisotropic.

The symmetry of an elastic material depends upon the symmetry
of its structure.

The relationship between the structural and elastic symmetry for
crystals was established according to F. Neumann's principle:

"the symmetry of the elastic properties of a solid contains that of
its crystallographic structure".

The elastic symmetry in an anisotropic material, renders Hook's law
simpler since some of the coefficients are related or are zero
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BAsIC CASES OF ELASTIC SYMMETRY

How we proceed:

We express, stress-strain relations (or the stiffness matrix) with respect to
We express the same relations with respect to the system

These two systems possess the symmetries of the investigated structure
We transform the stiffness tensor one on to another.

We compare and deduce the constants.
(the same procedure applies for the compliance &, = SklmnGmn )

O'XI x2 x3 le = Cklmn gmn
o ' 1 . ' '

Ox, x,x, 0y=Clm€

Cklmn = Ckicljcmpcnq Cz’qu

n
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BASIC CASES OF ELASTIC SYMMETRY

1: symmetry with respect to one plane: material is

defined as monoclinic

X3

e, T
e,,e,

o >

e.e '
1>™1 x2’ x2

v

Oy Cin G Gz G 0 0 €
O Cin Copn Cuy Gy 0 0 Exn
O3 |_ Cinn Gy Gy Gy 0 0 €33
O, Cio Con Gy Gy 0 0 2,
O3 0 0 0 0 Gz Gy || 265
O 0 0 0 0 Ciuy Cupn )\ 26y,

Transforming the matrix of the elastic constants and imposing
the symmetry requirement the number of the elastic constants
reduces to thirteen.

Typical examples are natural materials like,
kaolin (a clay material) and muscovite (or mica).




Mechanics of Solids: Anisotropy

BASIC CASES OF ELASTIC SYMMETRY

2: symmetry with respect to two orthogonal planes:
material is defined as orthotropic

Gll Cllll C11122 C1133 O 0 O 811
0-22 Cl 122 C2222 C2233 0 O O 822
033 — Cl 133 C2233 C3333 O 0 0 833
o, 0 0 0 C, O 0 |2¢
o 0 0 0 0 Cy 0 |26,
oy, 0 0 0 0 0 Cyu,\2e,

Transforming the matrix of the elastic constants and imposing
the symmetry requirement the number of the elastic constants
reduces to nine.

Here we find materials like wood, layered composite
materials, rolled metals.
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BASIC CASES OF ELASTIC SYMMETRY

3: symmetry with respect to one axis: material is

transversely isotropic
C’1111 C1122 C1133 0 O 0

: Oy &
X3, X3 o Cim G G 0 0 0 .
22 22
o C]133 C1133 C3333 0 O 0 <
33 — 1 33
Oy, 0 0 0 E(Cllll —Ci1p) 0 0 2e,
%13 0 0 0 0 Cy 0 | 2
92 0 0 0 0 0 C,, )\

Transforming the matrix of the elastic constants and imposing
the symmetry requirement the number of the elastic constants
reduces to five.

Here we find soil materials (deposited layers..)
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BASIC CASES OF ELASTIC SYMMETRY

4: symmetry with respect to all axes (independent of
orientation): material is isotropic

Here we find only two independent constants ﬁ,, J7
C1111 = /1+2/1 ) C1122 =1 ; C1212 = (C1111 - C1212) = 2:”

/1,,Ll are called Lamé constants and related to young modulus £ and Poisson's ratio v :

J=Ev/(+v)(1-2v) u=E/2(1+v)

Here we find several materials metals, ceramics
Polymers, particulate composites,......
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ISOTROPIC MATERIAL

Hook’s Law: linear isotropic solid

o, A+2u A A 0
0,, A A+2u A 0
oy | | A A A+2u 0
oy, 0 0 0 Y7,
O, 0 0 0 0
O, 0 0 0 0

two elastic constants.

O xR ©O ©o © ©

in index form

0 &,
01l &5, Oy = AE,,0, + 218,
0| é&; ey -
ItS Inverse
01| 2¢,
A0,
01| 2¢, £, =— ij o, +LG[
1)\ 26, 2u(3A+2u) 2u "
O-kl = mn=[ﬂ’5k15mn +ll’l(§km51n + é’kné‘lm)]gmn
= A&,,,04 + 218, .
Cklmn =ﬂ“ §kl §mn +/J (5km 5111 + 5kn 5lm )

Isotropic forth order tensor
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ISOTROPIC MATERIAL

Strain energy density: linear isotropic solid

]
Wie;)= Eigiigkk + U &,

It is a stress potential | > 0, =
for linear elastic material rq

+¢&,0,,0

kp™ kq
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BASIC CASES OF ELASTIC SYMMETRY

the number of the elastic constants is nine.

Typical lamina: orthotropic symmetry

511 Sllll S1122 S1133 O O O 011
822 Sl 122 S2222 S2233 0 0 O 622
xf,"’ 833 — Sl 133 S2233 S3333 O O O 633
’ &, o 0 0 S,, 0 0 |20,
& o 0 0 0 S,, 0 |20,
&, 0 0 0 0 0 S, )\ 20,

remarks:

1. There is no coupling between normal stresses and shear strains.
2. There is no coupling between shear stresses and normal strains.
3. There is no coupling between a shear stress acting on one plane
4. and a shear stress on a different plane.
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To determine the elastic constants in the stress strain
relation we perform 6 elementary experiments

811 Sllll
522 S1122
€33 | 51133
&l 1o
& 0
Exs 0

We apply on a small specimen of composite material,
single tractions and shear stresses along the three
directions one at a time.

Sl 122 Sl 133 O
S2222 S2233 O
S2233 S3333 O

o O O

0 0 S,, O
o 0 0 S,,
0 0 0 0 S,

o O O O O
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1 . Vi
€11 =O1111011 =501, 5 & =0 nd =~ 0y
| E,
A%
_ _ V3 . R
€33 = 01330 = O, 5 &,=83=63=0
E,
v 1
_ _ M i _ _
&, =98,12205 = Oy 5 &y =080, = 0,,
2 2

€3 =01133053 =0, 5 &, =86;3=63=0
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I o ——ha Coe = o ——Via
11 = 91133033 = 33 5 Gy T 0033033 = 33
E, E,
‘ 1 . 0
€33 = 01133033 = O3 5 &) =63=86)3=

3

=6y =6;=0

€ —0,, . &.=¢&,=0
12 12 5 13 23
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orthotropic symmetry
In terms of engineering constants
X) o L Y Vs 0 0 0
El E2 E3
Vi 1 Yy 0 0 0
& E, E, E; O
822 V13 _ V23 1 0 0 0 022
833 — E] E2 E3 033
‘2 o o o L ¢ o || 29"
813 4G12 20—13
b2 0 0 0 0 —4(1; 0 |\
13
E19E29E3’ G129G139G239 0 0 0 0 0 ﬁ
23

Vors V125 Vi35 V315 Vo35 Vs

Vor _Via . Vi3 V3 . Va3V

= ) ) ==

»
A

E, FE, E E, E, E, NINE independent elastic constants.
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Composite plates: Conditions of plane stress

X
2 A 0>, T
: 0,

—

021
O-l;_l-_a JZ
22
€1 St Sz
En |=| St Som
Ey 0 0

!

Oi1» Oy O, =0, %0

O3, Oy 033 =0

!

0 o,
0 o
S1212 20-12

E B
&1 vl 12 Oy
Exn | = _l;z I 0 Oy
3P 1 ’ i 20y,

0 0 —

4G,,

Four independent elastic constants
ELE,, G,V
v, [ E,=v,/E
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Composite plates: simplifications

X
2 A Oy T
: 0,

—

€1 €

O 0,

= «— ; Oy || O,
12 1

l Oy 012 012

Note here the shear component: 712 = S66012
It is so designated to ‘comply’ with some books in composites

(51\ (Sn S O\(Gl\

2172 )
0, 2812

\12) \ 0 0 S66/k012/

With
1 1
S11 = Szz =
E, E,
Vv A%
S12 :SZI :_i__i;
E, E,
1
Se6 _G_
12

The stress-strain relations are described
with reference to the principal material system.
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Composite plates: simplifications in terms of stiffness

r Oy
TO‘IZ 01 O, @, O €1 0, O, @, O &
—_—
0y =10, O O &y |=| 0, |10, O, O &,
(0}
0411 l TZI O, 0 0 Ok )\ 26, Oy, 0 0 O )\ 1>
>
0, On
_____ > Q — El . Q — EZ
— e T ; 2 7]
O, 1022 1 ViV ViV
v, E v, E,
Q12:Q21: - Q66_G12
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Composite plates: changes of coordinate system

A
Y Gy T
O
— X v
O yx (Ty)g/,:\:/:
o, T_»
4_1 > 0
v
xz % >
— X
o, l -
The stress-strain relations are described The stress-strain relations are described
with reference to the principal material system. with reference to a rotated system.
& S S 0 ) o €, S Sy S|l o)
s =19 S 0 o —
2 12 22 2 €, S X S;vy S v || Oy
V12 0 0 S¢)\on, Vs S S S

SX sy sS Xy
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Composite plates: changes of coordinate system

Y Gy T o
— X v
O, GW,%:
Gf—l T—> 0
(o2
& T
X, N Y N
-— X
O, l o)
For the stresses: For the strains:
. . 2 .2 :
o, =0, oS’ f+o, sin’ &+20,, cosfsinf & =¢&,COS 9+8y S 49+8xy cos@sind
o, =0, sin’0+0,cos’ @20, cos@sinf g, =¢.sin” @ +0o,cos’ O—¢,, cosOsinf

. 2 .2 . .
0, =0, =—(0,—0,)cosfsinf+o  (cos” & —sin” 0). &, =—(e, —¢,)cosOsin O +¢_(cos” O —sin’ 0).
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Composite plates: changes of coordinate system
Stiffness and compliance matrices

vt o
y T o
) xy xl v \/Gl
o
5 Tf‘j
4—1 - 6 !
v
'xZ ) U4 > o,
o r :
v ) o, with ¢=cosf; s=smné
For the stiffness matrix For the compliance matrix:
0, =0,¢" +0ys" +(2Q12 + 4Q66)62S2 S =S’ + 85" +(2S12 + S66)02S2
0, = 0,5t +0,c* + (ZQ12 +4Q66)CZS2 S, = S, st +8,,c* +(ZS12 + S66)02S2
0, = (Qn +0,, 20, - 2Q66)62S2 + 0O (C TS ) Sy = (4S11 +485,, =85, _2S66)02S2 + S (C4 +S4)
Q, = (Q 00 4Q66)02S2 +9;, (C +s ) Sy = (Sll +55, _S66)C2Sz +5), (C4 +S4)
st = (Qn Q _2Q66)c S _(sz _Q12 _2Q66)CS3 st = (2S11 _2S12 —S66)C3S—(2522 _2S12 _S66)CS3
st = (Qll O, — 2Q66)CS3 _(sz -0 _2Q66)C3S' Sys = (2S11 -25, _S66)CS3 _(2S22 -25), _S66)C3S'
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Composite plates: changes of coordinate system

engineering constants (i.e. moduli and Poisson’s ratios)

with reference to a coordinate system rotated at an angle ‘theta’ with respect to

the principal material coordinates. We can load the plate with single loads (normal and shear)
to obtain the stress strain relations (similar to the 3D case shown earlier)

y A o vxy — Vyx
y 1 v
T O-xy X ¥ M E ¥ Ey
— Pl E E G
T Oyl &, ’ "I o.) With the symmetry conditions 7w _ Mw
o T % . |z Vi 1 M, > E G
< > \ - X xy
1 o, 0 ’ E, E G, |’
x‘\*\ i 7 xy 1 O-xy 77yS — nsy
2 4 > s nys E Gx
o l X E E G Y Y
xy Uy x y Xy

Note that the matrix is full!
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Y Yo
' T ny X 1 Vyx 77sx
p E E G
O-yx Gy)g//%:\ gx X Yy Xy Gx
o, 7N v, 1 7, Compare
1 o) . y =T E E G O-y W|th
y\ X y Xy
Xa N 4 xy xy
2 ) > nxs 77ys 1
— X
% | o E. E G,
1 1 1 1%
S =—; § =—3; 8§ =—; § =§ —_»__»
Xx ’ yy sS : xy VX
EX Ey Xy E X Ey
S — S — nxs nsx . S _ S . nys . nsy
XS SX ys - Sy - -
Ex ny Ey ny

gx Sxx
Y - Syx
7/ Xy S SX

Xy

Yy

sy

XS

Vs

thh \”n 0

S

qQ

Xy
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We can relate the elastic constants (moduli and Poisson’s ratios) in the rorated system of coordinates to
The principal system of coordinates. We need to combine the following relations:

1 1
E

1

Sn = E,

;Szz — 2:

Vou _ Vo 1

1

S, = (45, +48,, -85, -

S11+S22

(
(25,
(

S
SXS
S

S . =S8,ct+8,s"+ 2512+S66)
S, —Sls +S8,ct + 2S12+S66)

)cs -I—Slz(c +5 )
=28, — S66)c S — (2S22 =28, —566)CS3
28, —28,, =S¢ ) cs’

66)cs +S66<c +5 )

—(28,, =28, =S¢ )C’s.

| | |
Sxx:—' S =—; SSS:—; Sx :Sx:_ VR
Ex »w Ey ny % J Ex ,
Ui U) n n
S,=8, =t _Tu. g _g Tn_Tv
XS SX s sy
Ex ny B Ey ny
1 2 2 |
:>—:C—(6'2 V12S2)+S—<S2 V2102)+—C2S
Ex El E2 G12
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In a similar manner we can obtain we have for the other elastic constants:

1 _Cz 2 2 s’ 2 2 15,
£ = l(c V,,S )+E2 (S V,,C )+Glzc S
1 _S2 c’ I 5,
£ = £ (S V,,C )+E2 (c V,,S )+ - c’s
2 2 2 2 2 2\2
Gl :420 (1+v12)+4SEC (1+v21)+(c C_?S
xy 1 2 12

Ex Ey El E_2 12
2¢ 2¢s’
%S:gsx - CS(I Vo) - ;;S (1+vy) — (Cz_SZ)
X Xy 1 2 12
3 3
Z?ys = Z;y —2CS (1 vlz) 2¢ S(1+v21)+ < (cz—sz)
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