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Supporting material
Appendix D: Notes on Anisotropy (J Botsis) 

The Hook’s law for the general material is presented 

According to the material’s structural symmetries, 
we deduce the number of elastic constants in various types of 
anisotropy
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( )σ x

( )ε x

A material is linearly elastic if its applied stress field

is related to the resulting strain field

by a linear relation or the generalized Hooke law,

( ) ( ) ( ) , ( ) ( ) ( ) ( , , , 1, 2,3)x C x x        x x x         kl klmn mnC k l m n= = =σ ε σ ε

Stiffness fourth order tensor

' ( ) ( ) ( , , , , , , , 1, 2,3)x x        klmn ki lj mp nq ijpqC c c c c C k l m n i j p q= =
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( ) ( ) ( ) , ( ) ( ) ( ) ( , , , 1, 2,3)x C x x        x x x         kl klmn mnC k l m n= = =σ ε σ ε

When the stiffness            is independent  of       the we have 
a homogeneous material otherwise it is inhomogeneous. 

In the general case we have 9 equations and                elastic constants.

' ( ) ( ) ( , , , , , , , 1, 2,3)x x        klmn ki lj mp nq ijpqC c c c c C k l m n i j p q= =

( )C x x

43 81=

11 1111 11 1112 12 1113 13 1121 21 1122 22 1123 23 1131 31 1132 32 1133 33

22 .......
 σ C ε C ε C ε C ε C ε C ε C ε C ε C ε

σ
= + + + + + + + +
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11 1111 11 1112 12 1113 13 1121 21 1122 22 1123 23 1131 31 1132 32 1133 33

22 .......
 σ C ε C ε C ε C ε C ε C ε C ε C ε C ε

σ
= + + + + + + + +
=

In matrix form these equation are 

We can write these equations using
compliance coefficients by taking 
the inverse of the stiffness 

11 1111 1122 1133 1112 1113 1123

22 2211 2222 2233 2212 2213 2223

33 3311 3322 3333 3312 3313 3323

12 1211 1222 1233 1212 1213 1223

1311 1322 1333 1312 1313 132313

2311 232223

C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C C C C
C C C

σ
σ
σ
σ
σ
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 
 
 
 

= 
 
 
  
 
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  
  
  
  
  
  
  
      
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ε
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ε
ε
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 
 
 
 

= 
 
 
  
 
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σ
σ
σ
σ
σ
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  
  
  
  
  
  
  
      

Stiffness Matrix 

Compliance Matrix 

,S         kl klmn mnε S σε σ= =
1S  C −=
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SYMMETRIES OF THE STIFFNESS MATRIX (OR COMPLIANCE)

Due to the symmetries of the stress and strain tensors, the 

=         
kl lk

mn nm

σ σ
ε ε

=
klmn lkmn klnmC C C= = are called minor symmetries

These symmetries reduce the number of independent constants:

From                     to   36. 

To proceed further we need the help of thermodynamics:

43 81=
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SYMMETRIES OF THE STIFFNESS MATRIX (OR COMPLIANCE)

In linear elasticity we adopt two important hypotheses:

1: For an adiabatic or isothermal process, 
there exists a strain energy density function W, which is 
also a potential for the stresses.

2: The stability hypothesis which states that the 
stiffness tensor is positive definite, i.e.,

These two hypotheses result in:

( )ij
ij

ij

W
σ

ε
ε

∂
=

∂

: 0, 0C       ijkl ij kl ijC= > ∀ ≠ε ε ε ε ε
1( )
2kl ijkl ij klW C=ε ε ε

11 1111 11 1122 22 1132 32
11

22 2211 11 2222 22 2232 32
22

....

....

W C C C

W C C C

∂
= = + + +

∂
∂

= = + + +
∂

σ ε ε ε
ε

σ ε ε ε
ε

2

klmn mnkl
kl mn

W C C∂
= =

∂ ∂ε ε

2

1122 2211
11 22

W C C∂
= =

∂ ∂ε ε

* 1( )
2kl ijkl ij klW S σ σσ = 

 

*( )ij
ij

ij

W σ
σ

ε
 ∂

=  ∂ 

strain energy density
stress energy density 

This symmetry reduces the independent elastic constants to 21
(the same arguments apply for the compliance coefficients)
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SYMMETRIES OF THE STIFFNESS MATRIX (OR COMPLIANCE)

Overall the symmetries are: klmn lkmn klnm mnklC C C C= = =

tensor notation 11 22 33 23,32 31,13 12,21

matrix notation+ 1 2 3 4 5 6

With these symmetries, the matrix elements
can be simplified as shown in the table below,

+This notation is used in the literature for layered composite materials
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BASIC CASES OF ELASTIC SYMMETRY

With respect to their elastic properties, all engineering materials 
can be divided into isotropic and anisotropic. 

The symmetry of an elastic material depends upon the symmetry 
of its structure. 

The relationship between the structural and elastic symmetry for 
crystals was established according to F. Neumann's principle: 

"the symmetry of the elastic properties of a solid contains that of 
its crystallographic structure".

The elastic symmetry in an anisotropic material, renders Hook's law 
simpler since some of the coefficients are related or are zero
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BASIC CASES OF ELASTIC SYMMETRY

How we proceed:

We express, stress-strain relations (or the stiffness matrix) with respect to

We express the same relations with respect to the system 

These two systems possess the symmetries of the investigated structure

We transform the stiffness tensor one on to another. 

We compare and deduce the constants.
(the same procedure applies for the compliance                               )

1 2 3Ox x x
' ' '
1 2 3Ox x x

kl klmn mnCσ ε=

kl klmn mnSε σ=

' ' 'kl klmn mnCσ ε=

'
klmn ki lj mp nq ijpqC c c c c C=
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BASIC CASES OF ELASTIC SYMMETRY

1: symmetry with respect to one plane: material is 
defined as monoclinic

11 1111 1122 1133 1112 11

22 1122 2222 2233 2212 22

33 1133 2233 3333 3312 33

12 1112 2212 3312 1212 12

13 1313 1323 13

23 1323 2323 23

0 0
0 0
0 0
0 0 2

0 0 0 0 2
0 0 0 0 2

C C C C
C C C C
C C C C
C C C C

C C
C C

   
   
   
   

=   
   
   
      
   

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε





 
 
 
 
  



Transforming the matrix of the elastic constants and imposing
the symmetry requirement the number of the elastic constants 
reduces to thirteen. 

Typical examples are natural materials like, 
kaolin (a clay material) and muscovite (or mica).

'
2 2,  x x

3x

'
2 2,e e

3e

'
1 1,e e

'
1 1,  x x '

3x

'
3e

O
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BASIC CASES OF ELASTIC SYMMETRY

2: symmetry with respect to two orthogonal planes: 
material is defined as orthotropic

Transforming the matrix of the elastic constants and imposing
the symmetry requirement the number of the elastic constants 
reduces to nine. 

Here we find materials like wood, layered composite 
materials, rolled metals.

'
2 2,  x x

3x

'
2 2,e e

3e

1e

'
1 1,  x x '

3x

'
3e

O

'
1e

'
1 1,  x x

11 1111 1122 1133 11

22 1122 2222 2233 22

33 1133 2233 3333 33

12 1212 12

13 1313 13

23 2323 23

0 0 0
0 0 0
0 0 0

0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2

C C C
C C C
C C C

C
C

C

    
    
    
    

=    
    
    
        
    

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε
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BASIC CASES OF ELASTIC SYMMETRY

3: symmetry with respect to one axis: material is 
transversely isotropic

Transforming the matrix of the elastic constants and imposing
the symmetry requirement the number of the elastic constants 
reduces to five. 

Here we find soil materials (deposited layers..)

2x2e
1e

1x

'
3 3,  x x

'
3 3,e  e

O

'
2e '

2x

'
1x

'
1e

θ

θ

1111 1122 1133
11 11

1122 1111 1133
22 22

1133 1133 3333
33 33

12 121111 1122

13 13
1313

23 23
1313

0 0 0
0 0 0
0 0 0

1 20 0 0 ( ) 0 0
2

20 0 0 0 0
20 0 0 0 0

C C C
C C C
C C C

C C

C
C

                 =    −                    

σ ε
σ ε
σ ε
σ ε
σ ε
σ ε
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BASIC CASES OF ELASTIC SYMMETRY

4: symmetry with respect to all axes (independent of 
orientation): material is isotropic

Here we find only two independent constants             :

are called Lamé constants and related to young modulus        and Poisson's ratio      :

Here we find several materials metals, ceramics 
Polymers, particulate composites,……

1111 1122 1212 1111 12122 ; ; ( ) 2              C C C C C= + = = − =λ µ λ µ

,   λ µ

,   λ µ

/ (1 )(1 2 )λ Eν ν ν= + − / 2(1 )μ E ν= +

E ν



Mechanics of Solids: Anisotropy 

ISOTROPIC MATERIAL

Hook’s Law: linear isotropic solid

two elastic constants.

11 11

22 22

33 33

12 12

13 13

23 23

2 0 0 0
2 0 0 0

2 0 0 0
20 0 0 0 0
20 0 0 0 0
20 0 0 0 0

σ ελ µ λ λ
σ ελ λ µ λ
σ ελ λ λ µ
σ εµ
σ εµ
σ εµ

+    
    +    
    +

=    
    
    
            

2kl pp kl klσ λε δ µε= +

1
2 (3 2 ) 2

ij
ij kk ij

λδ
ε σ σ

µ λ µ µ
= − +

+

( )= +  klmn kl mn km ln kn lmC +λδ δ µ δ δ δ δ

[ ]( )
2

kl klmn mn kl mn km ln kn lm mn

mm kl kl

Cσ ε λδ δ µ δ δ δ δ ε

λε δ µε

= +

= +

= +
                     .

Isotropic  forth order  tensor

in index form

its inverse
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ISOTROPIC MATERIAL

Strain energy density: linear isotropic solid

It is a stress potential
for linear elastic material

1( )
2ij ii kk ij ijW ε λε ε με ε= +

( ) 1 2
2

ij ijii kk
pq kk ii ij

pq pq pq pq

W ε εε εσ ε ε με
ε ε ε ε

 ∂ ∂∂ ∂
= = + +  ∂ ∂ ∂ ∂ 

λ

( )

( )

1 2
2
1 2 2 2
2

     

pq ip iq kk ii kp kq ij ip jq

pq kk pq pq kk pq

σ δ δ ε ε δ δ με δ δ

δ ε με δ ε με

= + +

= + = +

λ

λ λ
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BASIC CASES OF ELASTIC SYMMETRY

Typical lamina: orthotropic symmetry
the number of the elastic constants is nine. 
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
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
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


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22 1122 2222 2233 22
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23 2323 23

0 0 0
0 0 0
0 0 0

0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2
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S S S
S S S

S
S

S

    
    
    
    

=    
    
    
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    

ε σ
ε σ
ε σ
ε σ
ε σ
ε σ

remarks:
1. There is no coupling between normal stresses and shear strains.
2. There is no coupling between shear stresses and normal strains.
3. There is no coupling between a shear stress acting on one plane 
4. and a shear stress on a different plane. 
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To determine the elastic constants in the stress strain 
relation we perform 6 elementary experiments

We apply on a small specimen of composite material, 
single tractions and shear stresses along the three 
directions one at a time.

11 1111 1122 1133 11

22 1122 2222 2233 22
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orthotropic symmetry

NINE independent elastic constants. 

x1

x3

x2

































































































3121

1 2 3

3212

11 111 2 3

22 2213 23

33 331 2 3

12 12

1213 13

23 23

13

23

1 0 0 0

1 0 0 0

1 0 0 0

210 0 0 0 0
4 2

1 20 0 0 0 0
4

10 0 0 0 0
4

νν
E E E

νν
E E E
ν ν
E E E

G

G

G

 − − 
 
 
− −            − −     =                     
 
 
  
 

ε σ
ε σ
ε σ
ε σ
ε σ
ε σ



In terms of engineering constants

1 2 3, , ,E E E 12 13 23, , ,G G G
21 12 13 31 23 32, , , , ,ν ν ν ν ν ν

13 31 23 3221 12

2 1 1 3 2 3

; ;                ν ν ν νν ν
E E E E E E

= = =
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Composite plates: Conditions of plane stress

1x

2x

21σ

12σ

12σ

21σ

11σ

11σ

22σ

22σ

11 22 12 21, , 0  σ σ σ σ= ≠

13 23 33, , 0  σ σ σ =

11 1111 1122 11

22 1122 2222 22

12 1212 12

0
0

0 0 2

S S
S S

S

    
    =    
    
    

ε σ
ε σ
ε σ

21

1 2
11 11

12
22 22

1 2
12 12

12

1 0

1 0
2

10 0
4

ν
E E
ν
E E

G

 
− 

    
    = −    
    

    
 
 

ε σ
ε σ
ε σ

1 2 12 21 12, , , ,E E G ν ν

Four independent elastic constants

21 2 12 1/ /ν E ν E=
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Composite plates: simplifications

1x

2x

21σ

12σ

12σ

21σ

11σ

11σ

22σ

22σ

11 1

22 2

12 12

   
   

→   
   
   

σ σ
σ σ
σ σ

11 1

22 2

12 122

ε ε
ε ε
ε

   
   

→   
   
   γ

1 11 12 1

2 12 22 2

12 66 12

0
0

0 0

S S
S S

S

    
    =    
    
    

ε σ
ε σ
γ σ

11 22
1 2

21 12
12 21

2 1

66
12

1 1; ;

;

1

  

 

S S
E E

ν νS S
E E

S
G

= =

= = − = −

=

The stress-strain relations are described 
with reference to the principal material system.

Note here the shear component: 
It is so designated to ‘comply’ with some books in composites

12 66 12Sγ σ=

With
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Composite plates: simplifications in terms of stiffness 

1x

2x

21σ

12σ

12σ

21σ

11σ

11σ

22σ

22σ
11 11 12 11 1 11 12 1

22 12 22 22 2 12 22 2

12 66 12 12 66 12

0 0
0 0

0 0 2 0 0

Q Q Q Q
Q Q Q Q

Q Q

         
         = ⇒ =         
         
         

σ ε σ ε
σ ε σ ε
σ ε σ γ

1 2
11 22

12 21 12 21

21 1 12 2
12 21 66 12

12 21 12 21

;
1 1

;
1 1

           

      

E EQ Q
ν ν ν ν

ν E ν EQ Q Q G
ν ν ν ν

= =
− −

= = = =
− −
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Composite plates: changes of coordinate system

1 11 12 1

2 12 22 2

12 66 12

0
0

0 0

S S
S S

S

    
    =    
    
    

ε σ
ε σ
γ σ

The stress-strain relations are described 
with reference to the principal material system.

x xx xy xs x

y yx yy ys y

xy sx sy ss xy

S S S
S S S
S S S

    
    

=    
    
    

ε σ
ε σ
γ σ

The stress-strain relations are described 
with reference to a rotated system.

1x
2x

12σ

12σ 21σ

1σ

2σ

2σ1x
y

θ

2x
x

yxσ

xyσ

xyσ

yxσ

xσ
xσ

yσ

yσ

1σ

21σ
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Composite plates: changes of coordinate system

For the stresses: For the strains:

1x
2x

12σ

12σ 21σ

1σ

2σ

2σ1x
y

θ

2x
x

yxσ

xyσ

xyσ

yxσ

xσ
xσ

yσ

yσ

1σ

21σ

2 2
1

2 2
2

2 2
12 21

cos sin 2 cos sin

sin cos 2 cos sin

( ) cos sin (cos sin ).

x y xy

x y xy

x y xy

σ σ θ σ θ σ θ θ

σ σ θ σ θ σ θ θ

σ σ σ σ θ θ σ θ θ

= + +

= + −

= = − − + −

2 2
1

2 2
2

2 2
12

cos sin cos sin

sin cos cos sin

( ) cos sin (cos sin ).

x y xy

x y xy

x y xy

ε ε ε ε

ε ε ε

ε ε ε ε

= + +

= + −

= − − + −

θ θ θ θ

θ σ θ θ θ

θ θ θ θ
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Composite plates: changes of coordinate system
Stiffness and compliance matrices

For the stiffness matrix For the compliance matrix:

1x
2x

12σ

12σ 21σ

1σ

2σ

2σ1x
y

θ

2x
x

yxσ

xyσ

xyσ

yxσ

xσ
xσ

yσ

yσ

1σ

21σ

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

4 4 2 2
11 22 12 66

4 4 2 2
11 22 12 66

2 2 4 4
11 22 12 66 66

2 2 4 4
11 22 66 12

3 3
11 12 66 22 12 66

3 3
11 12 66 22 12 66

2

2

4 4 8 2

2 2 2 2

2 2 2 2 .

xx

yy

ss

xy

xs

ys

S S c S s S S c s

S S s S c S S c s

S S S S S c s S c s

S S S S c s S c s

S S S S c s S S S cs

S S S S cs S S S c s

= + + +

= + + +

= + − − + +

= + − + +

= − − − − −

= − − − − −

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

4 4 2 2
11 22 12 66

4 4 2 2
11 22 12 66

2 2 4 4
11 22 12 66 66

2 2 4 4
11 22 66 12

3 3
11 12 66 22 12 66

3 3
11 12 66 22 12 66

2 4

2 4

2 2

4

2 2

2 2 .

xx

yy

ss

xy

xs

ys

Q Q c Q s Q Q c s

Q Q s Q c Q Q c s

Q Q Q Q Q c s Q c s

Q Q Q Q c s Q c s

Q Q Q Q c s Q Q Q cs

Q Q Q Q cs Q Q Q c s

= + + +

= + + +

= + − − + +

= + − + +

= − − − − −

= − − − − −

cos ; sin   c sθ θ= =with
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Composite plates: changes of coordinate system

1x
y

θ

2x
x

yxσ

xyσ

xyσ

yxσ

xσ
xσ

yσ

yσ

engineering constants (i.e. moduli and Poisson’s ratios) 
with reference to a coordinate system rotated at an angle ‘theta’ with respect to 
the principal material coordinates. We can load the plate with single loads (normal and shear)
to obtain the stress strain relations (similar to the 3D case shown earlier)

1

1

1

yx sx

x y xy
x x

xy sy
y y

x y xy
xy xy

ysxs

x y xy

ν
E E G
ν
E E G

E E G

 
− 

         = −           
 
 
 

η

ε σ
η

ε σ
γ σ

ηη

   

   

xy yx

x y

xs sx

x xy

ys sy

y xy

ν ν
E E

E G

E G

η η

η η

=

=

=

With the symmetry conditions 

Note that the matrix is full!
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1x
y

θ

2x
x

yxσ

xyσ

xyσ

yxσ

xσ
xσ

yσ

yσ
1

1

1

yx sx

x y xy
x x

xy sy
y y

x y xy
xy xy

ysxs

x y xy

ν
E E G
ν
E E G

E E G

 
− 

         = −           
 
 
 

η

ε σ
η

ε σ
γ σ

ηη

Compare 
with  

x xx xy xs x

y yx yy ys y

xy sx sy ss xy

S S S
S S S
S S S

    
    

=    
    
    

ε σ
ε σ
γ σ

1 1 1; ; ;       xx yy ss
x y xy

S S S
E E G

= = =  xy yx
xy yx

x y

S S
E E
ν ν

= = − = −

;xs sx
xs sx

x xy

S S
E G
η η

= = = ys sy
ys sy

y xy

S S
E G
η η

= = =
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1 1 1; ; ;       xx yy ss
x y xy

S S S
E E G

= = =  xy yx
xy yx

x y

S S
E E
ν ν

= = − = −

;xs sx
xs sx

x xy

S S
E G
η η

= = = ys sy
ys sy

y xy

S S
E G
η η

= = =

We can relate the elastic constants (moduli and Poisson’s ratios) in the rorated system of coordinates to
The principal system of coordinates. We need to combine the following relations:

( )
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

4 4 2 2
11 22 12 66

4 4 2 2
11 22 12 66

2 2 4 4
11 22 12 66 66

2 2 4 4
11 22 66 12

3 3
11 12 66 22 12 66

3 3
11 12 66 22 12 66

2

2

4 4 8 2

2 2 2 2

2 2 2 2 .

xx

yy

ss

xy

xs

ys

S S c S s S S c s

S S s S c S S c s

S S S S S c s S c s

S S S S c s S c s

S S S S c s S S S cs

S S S S cs S S S c s

= + + +

= + + +

= + − − + +

= + − + +

= − − − − −

= − − − − −

21 12
11 22 12 21 66

1 2 2 1 12

1 1 1; ; ;   ν νS S S S S
E E E E G

= = = = − = − =

( ) ( )
2 2

2 2 2 2 2 2
12 21

1 2 12

1 1 .
x

c sc v s s v c c s
E E E G

⇒ = − + − +
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In a similar manner we can obtain we have for the other elastic constants:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

2 2
2 2 2 2 2 2

12 21
1 2 12
2 2

2 2 2 2 2 2
12 21

1 2 12

2 2 2 2 2 2 2

12 21
1 2 12

2 2
2 2 2 2 2 2

12 21
1 2 12

3 3

12 21
1 2

1 1

1 1

1 4 4 ( )1 1

1

2 21 1

x

y

xy

xy yx

x y

xs sx

x xy

c sc v s s v c c s
E E E G

s cs v c c v s c s
E E E G

s c s c c sv v
G E E G
v v c sv c s v s c c s
E E E E G

c s csv v
E G E E
η η

= − + − +

= − + − +

−
= + + + +

= = − + − +

= = + − + ( )

( ) ( ) ( )

2 2

12

3 3
2 2

12 21
1 2 12

2 21 1ys sy

y xy

cs c s
G

cs c s csv v c s
E G E E G
η η

− −

= = + − + + −
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